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The concept of the electron localization function �ELF� is extended to two-dimensional �2D� electron
systems. We show that the topological properties of the ELF in two dimensions are considerably simpler than
in molecules studied previously. We compute the ELF and demonstrate its usefulness for various physical 2D
systems focusing on semiconductor quantum dots that effectively correspond to a confined 2D electron gas.
The ELF visualizes the shell structure of harmonic quantum dots and provides insight into electron bonding in
quantum-dot molecules. In external magnetic fields, the ELF is found to be a useful measure of vorticity when
analyzing the properties of quantum-Hall droplets. We show that the current-dependent term in the ELF
expression is important in magnetic fields.
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I. INTRODUCTION

The study of electron localization is linked to the pursuit
of a rigorous systematization of the elusive concept of a
chemical bond,1,2 ubiquitous in quantum chemistry ever
since the first attempts of its description.3 The main point in
the concept of electron localization is not where the electrons
are �or in quantum terms, where the electrons are likely to
be�, which can be monitored from the electron density, but
where the electrons are localized.

The concept of localization �and delocalization� arises
from Pauli’s exclusion principle: two electrons with the same
spin cannot occupy the same spatial position. The conse-
quence is the appearance of the Fermi hole,4 a function
which determines how the probability of finding an electron
at some point diminishes because of the presence of another
like-spin electron in its vicinity. In other words, the Fermi
hole is that part of the exchange and correlation hole that
stems solely from the fermionic nature of the electron and
not because of the Coulomb repulsion. Any electron at a
given point carries its associated Fermi hole as a counterpart.
The localization or delocalization of the electron is equiva-
lent to the localization or delocalization of its Fermi hole.5,6

Naturally, a localization descriptor should be based on this
function or, correspondingly, on the like-spin pair probability
function—this will be clarified below. Indeed, the so-called
electron localization function7–10 �ELF� is nothing else than
an appropriate renormalization of the Fermi hole cur-
vature.11,12

The ELF is large where electrons pair. Our intuition in
chemistry tells us that electrons should pair forming local-
ized groups in each atomic shell of the inert cores, in the
chemical bonds, and in the nonbonding or lone pairs. More
precisely, the topological properties of a good localization
function should partition the space for each group of
electrons—also for delocalized groups of electrons such as �
systems in conjugated molecules, for which the ELF values
should be low. Our understanding of chemistry is founded on
the electron pair, a consequence of Pauli’s exclusion prin-
ciple and, more particularly, of the localization of one elec-
tron of each spin in a region of space. Accordingly, it is not

surprising that the main purpose of the analysis of the ELF
has been to help our intuition of the fundamental chemistry
concepts of pairs and bonds.

Due to this focus on the elucidation of the chemical bond,
all studies of electron localization functions performed to
date have referred to three-dimensional �3D� systems. To our
knowledge, no attempts have been made to map the electron
localization in two dimensions. However, significant ad-
vances in semiconductor technology have enabled the pro-
duction and manipulation of low-dimensional nanoscale
structures. Common examples of these systems are quantum
dots �QDs�,13 often also called artificial atoms. The electrons
in QDs are confined in the interface of a semiconductor het-
erostructure, e.g., GaAs /AlGaAs, so that the transverse di-
mensions controlled by a lateral confinement are consider-
ably larger than the thickness of the QD. In most cases, a
two-dimensional �2D� model describes the movement of the
electrons with reasonable accuracy. On the other hand, the
approximation for the in-plane confinement depends on the
QD shape that can be, e.g., circular, rectangular, or ringlike
�quantum ring� or consist of several potential minima
�quantum-dot molecule�. Due to the tunable shape, size, and
number of electrons, QDs have emerging applications in
fields of quantum computation, and from a theoretical point
of view, they are an ideal playground to study many-electron
phenomena and test computational methods. Hence, we ex-
pect the ELF to be of interest for various QD systems, since
it carries valuable information about the electronic structure
regardless of the dimensionality.

This paper is organized as follows. In Sec. II, we present
a detailed derivation of the ELF in two dimensions, focusing
on the definition of the Fermi-hole curvature which is the
core of the ELF, and show how the relevant expressions hold
compared with the 3D case. We also discuss the topological
properties of the ELF in two dimensions. In Sec. III, we
briefly present the QD model and our computational scheme
based on spin-density-functional theory. In Sec. IV, we pro-
vide four examples where the ELF is a useful tool when
analyzing the electronic properties of QDs. They include �i�
visualization of the shell structure of a parabolic �harmonic�
QD, �ii� showing the bondlike interdot electron couplings in
QD molecules, �iii� introducing the ELF as a measure of
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vorticity in quantum-Hall droplets, and �iv� visualization of
vortex localization in high magnetic fields. We also show
that the current-dependent term in the ELF �or in the Fermi-
hole curvature�, which has been neglected in most studies
until now, is relevant in order to obtain meaningful results
for QDs in magnetic fields. Concluding remarks are given in
Sec. V.

II. ELECTRON LOCALIZATION FUNCTION

A. Derivation of the electron localization function
in two dimensions

In the following, we go in detail through the mathematical
derivation of the ELF. We focus on the differences in the
expressions in three and two dimensions, in particular, be-
tween the spherical and circular averages and kinetic-energy
densities.

We consider the many-electron wave function
��r1�1 , . . . ,rN�N�, where N is the number of electrons, and
r and � are the electronic position and spin coordinates,
respectively. We point out that � can be either an eigenstate
of a static Hamiltonian or an evolving time-dependent state.
Nevertheless, we omit the time coordinate in the notation.
The necessary ingredients in the derivation of the ELF are
the first-order reduced density matrix,14–16

�
�1�1�
�1� �r1�r1�� = N �

�2,. . .,�N

� dr2 ¯ drN

��*�r1�1, . . . ,rN�N���r1��1�, . . . ,rN�N� ,

�1�

and the diagonal of the second-order reduced density
matrix,45

��1�2

�2� �r1,r2� = N�N − 1� �
�3,. . .,�N

� dr3 ¯ drN

����r1�1,r2�2, . . . ,rN�N��2. �2�

The diagonal of ��1� is commonly known as the spin density,

n��r� = ���
�1��r�r� , �3�

and the total density, n�r�=��n��r�, sums over the spin vari-
able. It has an easy interpretation: n�r�dr is the probability
�normalized to N� of finding an electron in a small volume dr
at position r. The pair probability density is defined analo-
gously by

n�2��r1,r2� = �
�1,�2

��1�2

�2� �r1,r2� �4�

and can be interpreted in the following way: n�2��r1 ,
r2�dr1dr2 is the probability of finding one electron at r1 and,
simultaneously, another electron at r2.

Were the electrons fully independent, this latter probabil-
ity would just be the product of the electron densities:
n�2��r1 ,r2�=n�r1�n�r2�. However, their exchange �fermionic
character� and Coulomb interaction reduce the pair probabil-
ity by a value known as the exchange and correlation hole:

n�2��r1,r2� = n�r1�n�r2� + h�r1,r2� . �5�

The Fermi hole is the part of h�r1 ,r2� which is entirely due
to the antisymmetric character of the wave function regard-
less of the Coulomb interaction. Accordingly, it only appears
for like-spin electrons. It is the dominant part at short dis-
tances �r2→r1�.

The key function to study the electron localization is the
like-spin conditional pair probability function defined as

P��r1,r2� �
���

�2��r1,r2�
n��r1�

. �6�

The physical meaning of this function is the following. It
gives the probability of finding one �-spin electron at r2
knowing with certainty that another �-spin electron is at r1.
The question is now how probable it is to find one like-spin
electron in the vicinity of the first reference one. For this
purpose, it is useful to define a conditional pair probability
function at a distance s via a spherical �in three dimensions�
or circular �in two dimensions� average. Here, we deal with
the latter case,

p��r1,s� =
1

2�
�

0

2�

d�P��r1,r1 + sû�� , �7�

where û�=cos �x̂1+sin �x̂2. Since we are particularly inter-
ested in the behavior of p��r ,s� at small s, we need to per-
form Taylor expansions,

��r1�,�r1 + sû���, . . . ,rN�N�

= s�û� · �2���r1�,r2�, . . . ,rN�N�r2=r1
+ O�s2� , �8�

where �2 is the gradient with respect to the second electron
variable in �. The s0 term is absent due to Pauli’s exclusion
principle. We now take the square,

���r1�,�r1 + sû���, . . . ,rN�N��2

= s2��û� · �2���r1�,r2�, . . . ,rN�N�r2=r1
�2 + O�s3�

= s2 �
i,j=1

2

c
i
*cjui���uj��� + O�s3� , �9�

where

ci = �x̂i · �2���r1�,r2�, . . . ,rN�N�r2=r1
, �10�

with i=1,2. The circular average is

1

2�
�

0

2�

d����r1�,�r1 + sû���, . . . ,rN�N��2

= s2 �
i,j=1

2

c
i
*cj

1

2�
�

0

2�

d�ui���uj���

=
1

2
s2�

i=1

2

�ci�2 + O�s3�

=
1

4
s2�2

2���r1�,r2�, . . . ,rN�N��r2=r1

2 + O�s3� . �11�
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This expression may then be used in combination with Eqs.
�2�, �6�, and �7� to obtain

p��r1,s� =
1

2
s2C��r1� + O�s3� , �12�

C��r1� =
1

2

�2
2���

�2��r1,r2�r2=r1

n��r1�
. �13�

These equations are similar to the ones obtained in the 3D
case; in fact, they are the same except for the factor 1 /2 in
Eq. �12�, which is 1 /3 in three dimensions. The function
C��r� satisfies exactly the same Eq. �13� in two and three
dimensions. This is the function that measures the local like-
spin pair probability, is an inverse measure of electron local-
ization, and is the function used to define the ELF. We should
also note that �2

2���
�2��r1 ,r2�r2=r1

is the Fermi-hole curvature
as defined by Dobson.11 Other definitions, equivalent regard-
ing the information that they contain, are also possible.17

We conclude that the expressions that define the ELF do
not change significantly from three to two dimensions. The
function C��r� alone does not reveal the localization explic-
itly. For that purpose, one needs to perform the following
renormalization, which defines the ELF as46

ELF��r� =
1

1 + 	C��r�/C�
HEG�n��r��
2 , �14�

where C�
HEG�n��r�� is the value of the C� function for the

homogeneous electron gas of �constant� spin densities n��r�.
Analogously to the 3D case, the expression for C�

HEG in two
dimensions is the kinetic-energy density,

C�
HEG�n�� = ���n�� = 2�n�. �15�

In terms of the total density n and the polarization �often also
called magnetization� 	= �n↑−n↓� /n, the expression immedi-
ately yields

C�
HEG�n,	� =

�

2
�1 + 	2�n �16�

for the total kinetic-energy density.
The above definition of C� is completely general but re-

quires the diagonal of the second-order reduced density ma-
trix, which is a fairly complex and often unmanageable ob-
ject. In most cases, however, a further approximation is taken
by assuming that � is a single-determinantal wave function.
In practice, this means that one uses the Hartree-Fock ap-
proximation, therefore neglecting the effect of correlations in
the ELF, or one uses density-functional theory �DFT� �see
below� and calculates the ELF of the noninteracting auxiliary
Kohn-Sham �KS� system. Both possibilities are in principle
unsatisfactory, but experience has demonstrated that the re-
sults are usually unaffected despite a notable mathematical
simplification �see Ref. 19 for the detailed steps�. If � is
formed by the set of KS orbitals 	
i↑
i=1

N↑ and 	
i↓
i=1
N↓ �N↑

+N↓=N� within the spin-DFT �SDFT�, one finds

C��r� = ���r� −
1

4

��n��r��2

n��r�
−

jp,�
2 �r�
n��r�

, �17�

where n��r�=�i=1
N� �
i��r��2 is the spin density �cf. Eq. �3��, ��

is the kinetic-energy density given by

���r� = �
i=1

N�

��
i��r��2, �18�

and jp,� is the spin-resolved paramagnetic current density,

jp,��r� =
i

2�
i=1

N�

	��

i�
* �r��
i��r� − 


i�
* �r� � 
i��r�
 . �19�

Here, we point out that most ELF calculations refer to
closed-shell molecules �or finite systems in general� in their
ground state and in the absence of magnetic fields or the
spin-orbit coupling. In those cases, real wave functions can
be assumed and the current term in Eq. �17� is absent. In
Secs. IV C and IV D, we note the importance of the current
term, which is needed in the ELF also during time-dependent
processes.20,21

B. Topological properties

The basis for the topological investigation of the ELF was
established by Silvi and Savin.8 The information contained in
the ELF is extracted with the help of some basic concepts
borrowed from the theory of dynamical systems.22,23 The
ELF is a scalar continuous function bounded between 0 and
1, and one should look at its gradient field, which in turn
defines the set of attractors—roughly speaking, the maxima
of the ELF. The important concept is then that of a basin of
each attractor—the set of points for which that attractor is the
� limit. In chemistry, each basin is then identified either as a
core basin �it contains a nucleus� or as a valence basin. The
latter ones are then classified according to the number of core
basins that they have a frontier with: if they have only one
neighbor core, they are called monosynaptic; if they have
more than one �disynaptic, trisynaptic, etc.�, they are bonds.
The absence of real nuclei in the 2D models makes this dis-
tinction not relevant. However, the division of space into
localization basins is still pertinent: the basins give us infor-
mation about the groups of electrons; exchange of electrons
is more unlikely between different basins than inside them.
In three dimensions, the attractors can then be single points
in the absence of special symmetries, ring-shaped lines of
attractors around a symmetry axis, or spheres around isolated
atoms. In two dimensions, obviously, the topology simplifies
and we can only find, besides point attractors, ring attractors
for cylindrically symmetrical problems.

III. QUANTUM-DOT MODEL

We study the ELF in 2D QDs restricted to the xy plane.
The system is described by an effective-mass N-electron
Hamiltonian,
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H = �
i=1

N ��pi +
1

c
Ai
2

2m*
+ Vext�ri� + EZ,i� + �

i�j

1


*�ri − r j�
,

�20�

where A is the external vector potential �in symmetric gauge�
of the homogeneous magnetic field B=B0ẑ perpendicular to
the plane, Vext�r� is the external confining potential in the xy
plane �see below�, and EZ=g*�BszB0 is the Zeeman energy.
We apply the conventional effective-mass approximation
with the material parameters for GaAs: the effective mass
m*=0.067, the dielectric constant 
*=12.4, and the gyro-
magnetic ratio g*=−0.44.

We solve the ground-state problem associated with the
N-electron Hamiltonian in Eq. �20� by applying the SDFT in
the collinear-spin representation. The KS states, needed in
Eqs. �17�–�19� for computing the ELF as defined in Eq. �14�,
are solved from the KS equation

��p +
1

c
A
2

2m*
+ VKS

� �r��
i��r� = 
i�
i��r� , �21�

where the KS potential VKS
� �r� is a sum of the external con-

fining potential, the Hartree potential, and the exchange-
correlation potential given by Vxc

� �r�=�Exc�n↑ ,n↓� /�n��r�.
To approximate the exchange-correlation energy Exc, we use
the local spin-density approximation �LSDA� with a param-
etrization provided by Attaccalite and co-workers.24 In QD
systems, the SDFT scheme together with the LSDA leads to
good numerical accuracy in comparison with quantum
Monte Carlo calculations even in relatively high magnetic
fields.25,26 We also point out that the local-vorticity approxi-
mation within the current SDFT �Ref. 27� does not lead to a
considerable improvement over the SDFT results.25 In the
numerical calculations, we apply the real-space OCTOPUS

code.28

IV. EXAMPLES

A. Shell structure

First, we examine the ELF in parabolic QDs at zero mag-
netic field �B=0�. Thus, we choose the external confining
potential in Eq. �20� as Vext�r�=�0

2r2 /2, where we set the
confinement strength to �0=0.421 68 a.u.=5 meV. The sys-
tem is a 2D harmonic oscillator with single-electron eigenen-
ergies 
nl= �2n+ �l�+1��0, where n=0,1 ,2 , . . . is the radial
and l=0, �1, �2, . . . is the azimuthal quantum number. The
corresponding shell structure has been experimentally well
depicted in the additional energies of a double-barrier GaAs
QD.29 Further details in the measured addition energies re-
sulting from the electron-electron interaction, such as Hund’s
rule-type of behavior, have been theoretically verified in nu-
merous studies employing, e.g., SDFT.30–32

Figure 1 shows the ELF �red solid lines� and the corre-
sponding electron densities �blue dashed lines� when N=6,
12, 20, 30, 42, and 56. In QDs, these “magic” electron num-
bers correspond to the first closed-shell configurations when

N�2. The shell structure is visualized clearly by the ELF.
We note, however, that the local maxima in the ELF do not
directly correspond to the filled energy shells. Instead, each
peak can be associated with a doubly occupied single-
electron state on the highest energy shell. This means that the
probability of electron localization is highest close to the
Fermi level. For example, in a 12-electron QD shown in Fig.
1�b�, the highest energy shell has six electrons with l
=0, �2, leading to distinctive peaks in the ELF at the center
�corresponding to l=0� and at r�4 �corresponding to l
= �2�. Nevertheless, in this system, the number of energy
shells is equal to the number of extrema in the ELF. As
expected, the variation between the extrema decreases as a
function of N, since the highest shell becomes relatively less
dominant. As seen in Fig. 1, the shell structure is visible also
in the electron density n�r�, but it is less clear than in the
ELF, especially at large electron numbers where the structure
is barely visible. The ELF instead provides an unambiguous
visualization of the shell structure, which is well plausible
from its physical nature discussed in Secs. I and II.

B. Quantum-dot molecules

The applicability of the ELF to visualize pairs and bonds
in molecules immediately suggests to use the ELF for the 2D
counterparts commonly known as QD molecules �QDMs�.
Since the spin-qubit proposal of Loss and DeVincenzo33 in
1998, coupled QD systems have attracted wide interest both
experimentally34 and theoretically,35 particularly in terms of
charge and spin manipulation. Following the standard QDM
definition, we write the external confining potential as
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FIG. 1. �Color online� ELF �red solid lines� with the correspond-
ing electron densities �blue dashed lines� for two-dimensional
closed-shell quantum dots. The maximum-density values are scaled
to 1.
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Vext�r� =
1

2
�0

2 min��
j

M

�r − r j�2� , �22�

where M is the number of potential minima located at r j
= �xj ,yj�. The case of M =1, r j = �0,0� is equal to a single
harmonic QD considered above. Here, we set M =4 and r j
= ���2, ��2� with �0=0.5 a.u. This corresponds to a
square-symmetric QDM with four minima.36 Now, Fig. 2
shows the result of our SDFT calculations for the total den-
sities and ELFs when N=8 ��a� and �b��, N=12 ��c� and �d��,
and N=16 ��e� and �f��, respectively. The ground-state total
spin S=0 in all the cases shown. The densities of N=8 and
N=12 QDMs look very similar with four distinctive peaks,
whereas the N=16 QDM shows more structure around the
density maxima. However, the ELFs of these QDMs are very
different from each other, having four maxima with one �lo-
cal� minimum �N=8�, five maxima with four minima �N
=12�, and four maxima with five minima �N=16�. Despite
the fact that the concept of chemical bonding seems less
meaningful in systems where the confining potential is fixed
�such as in 2D QD systems�, the central “basin” �see Sec.
II B� in Fig. 2�d�, for example, is very informative: there is
pronounced localization at the center, where the confining
potential actually has a repulsive cusp. Furthermore, this
ground-state property is not at all visible in the bare electron
density shown in Fig. 2�c�. Therefore, we find that the ELF
reveals features in the electronic structure of QDMs which
are absent in the electron density—a fact also demonstrated
in three dimensions.

C. Maximum-density droplet

Next, we perform our analysis of the 2D ELF for nonzero
external magnetic fields �B�0�. As the first example, we
consider a maximum-density droplet37,38 �MDD� of a single
parabolic QD. The MDD is a fully polarized �S=N /2� state,
where the electrons have consecutive angular momenta from

l=0 to l=−N+1. Each electron is accompanied by a so-
called Pauli vortex which corresponds to a change of 2� in
the phase of the many-electron wave function. Hence, the
MDD state is a unique finite-size counterpart of the filling
factor �=1 quantum-Hall state of the uniform 2D electron
gas. Figures 3�a� and 3�b� show the electron density and the
ELF of the MDD state in a 12-electron parabolic QD at B
=8 T. The MDD density has the well-known flat shape,37,38

whereas the ELF is characterized by a flat interior and local-
ization around the edge of the QD. Intersections of the den-
sity and the ELF are plotted in Figs. 3�c� and 3�d� �red
dashed lines�, together with the results for 6- and 20-electron
QDs at B=6 and 8 T, respectively. Interestingly, the values
of the ELF are very close to 1 /2 in the interior of the MDDs.
Thus, from Eq. �14�, we find C��r��C�

HEG�r� in this regime,
i.e., the kinetic-energy density of the uniform 2D electron
gas. The result suggests that the localization of electrons and
vortices compensate each other, which is well plausible con-
sidering the �=1 character of the MDD state. We may thus
expect that at higher magnetic fields, corresponding to the
fractional quantum-Hall regime ���1�, ELF values below
1 /2 can be found at positions of high vorticity.

Figure 3�d� also shows the ELF of the N=20 QD calcu-
lated without the current-density term jp in Eq. �17�. That
curve equals to the full ELF at r=0 where the current density
is zero but decays exponentially at larger r. Obviously, that
result does not capture the correct behavior of the MDD
state. The dramatic difference demonstrates the importance
of the current-density dependence in the ELF expression,
already at relatively moderate magnetic fields. In Fig. 3�e�,
we plot jp which increases linearly due to the successive
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(e) (f)
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n (N=16)

n (N=12)

ELF (N=16)

ELF (N=12)

ELF (N=8)

FIG. 2. �Color online� Ground-state total densities and ELFs for
four-minima quantum-dot molecules having 8, 12, and 16 electrons,
respectively. The total spin S=0 in all the cases.
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FIG. 3. �Color online� ��a� and �b�� Electron density and ELF of
the maximum-density droplet in a 12-electron quantum dot. ��c� and
�d�� Intersections of �a� and �b� together with the results for N=6
and N=20 quantum dots. ��e� and �f�� Paramagnetic current densi-
ties and the kinetic-energy densities of the maximum-density-
droplet states, respectively.
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increase in the angular momenta of the KS states in the
MDD �see above�.

D. Vortex structures

Increasing the magnetic field above the MDD limit at �
=1, which, as seen above, corresponds to ELF=1 /2, leads to
localization of vortices. Depending on the QD geometry, the
vortices may form clusters39–42 or merge together yielding
multiple phase quantization.43 In Fig. 4, we show the elec-
tron density and the ELF of a single-vortex solution in a
six-electron parabolic QD at B=11 T. In this case, the vortex
is localized at the center and directly visible as a hole in the
density. As expected, the ELF shows a similar structure. The
ELF has a bump with a value of �1 /2, located between the
center and the edge of the QD. This region can be interpreted
to have, on average, a local balance between electrons and
�Pauli� vortices, and it separates the localized vortex �ELF
=0� from the edge having high electron localization �ELF
�0.8�.

Increasing the magnetic field further leads to the forma-
tion of more vortices. Figure 5 shows a two-vortex structure
in a six-electron rectangular �hard-wall� QD at B=16 T. The
system has been studied in detail in Refs. 41 and 44. Again,
the vortices are seen as zeros in the ELF, whereas the density
is not exactly zero at these positions. Actually, the numeri-
cally exact density at the vortices is even further above zero
than the SDFT density due to the multiconfigurational nature
of the many-electron wave function.41 Nevertheless, the
ELF=0 result at the vortex positions is plausible, reflecting
again the difference between the probable location �density�
and the localization �ELF� of the electrons as discussed in
Sec. I. Along the edge of the QD, the ELF in Fig. 5�b� shows
six clear peaks with maximum values close to 1, separated
by local minima where ELF�1 /2. Thus, in this QD, the
ELF reveals the Wigner crystallization, i.e., localization of
electrons around their classical positions which are deter-
mined by the geometry of the system. This effect is consid-
erably less pronounced in the electron density shown in Fig.
5�a�.

V. CONCLUDING REMARKS

The electronic structure of a many-electron system is fully
characterized by its many-body wave function. In order to
acquire an intuitive visual understanding of the system, how-
ever, we must look at simpler objects—integrated magni-
tudes such as the electronic density, which lives in a lower-
dimensional space. Unfortunately, the density does not fully
reveal all the intricacies of the electronic structure, even if
we know that it contains all the information.

In the past, the ELF has proven to be a useful companion
to the density in the task of providing us with insightful
intuition on the electronic structure of molecules. In this
work, we have defined the ELF in two dimensions, and we
have demonstrated that its visualization, in addition to that of
the density, helps us understand the electronic structure of
2D systems such as semiconductor quantum dots. We have
shown the usefulness of the ELF to visualize the shell struc-
ture, as well as the bondlike features in coupled systems. In
particular, we have found that in magnetic fields, the ELF
can be used as a measure of vorticity, revealing the local
relation between the localization of electrons and vortices in
the system. In this context, we have shown that the current-
dependent term, which has been neglected in previous 3D
studies, has a major contribution to the ELF in magnetic
fields. We expect that alongside the rapid technological de-
velopments in the fabrication and manipulation of low-
dimensional systems, the ELF will prove to be a universally
applicable theoretical tool to obtain detailed information of
both static and dynamic many-particle properties.
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